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Lecture 14: October 21

The general problem. In order to prove Theorem 10.3, we need to solve the
following problem in linear algebra. Suppose that V is a finite-dimensional complex
vector space, with a representation by sl2(C). We denote by H,X, Y ∈ End(V )
the images of the standard generators of sl2(C). Suppose that h : V ⊗C V → C is a
hermitian pairing compatible with the sl2(C)-action; concretely, this means that

h(Y v′, v′′) = h(v′, Y v′′), h(Xv′, v′′) = h(v′, Xv′′), h(Hv′, v′′) = −h(v′, Hv′′)

for every v′, v′′ ∈ V . We also suppose that V has an increasing filtration F = F •V ,
with the following three properties:

(1) For every p ∈ Z, one has H(F p) ⊆ F p.
(2) For every p ∈ Z, one has Y (F p) ⊆ F p−1.

(3) The filtration e−
1
2Y F is the Hodge filtration of a Hodge structure of weight

n, polarized by h.

For lack of a better term, let us call this data a polarized sl2(C)-Hodge structure
of weight n. This expression is nedeed only temporarily, because we are going to
deduce from these conditions that V is actually a Hodge-Lefschetz structure of
central weight n (as defined in Lecture 3). Here is the precise statement.

Theorem 14.1. With notation and assumptions as above,

V =
⊕

k∈Z
Ek(H)

is a Hodge-Lefschetz structure of central weight n, which is polarized by h. More
precisely, each eigenspace Ek(H) has a Hodge structure of weight n+ k, and

F pV =
⊕

k∈Z
F pEk(H).

Moreover, if a semisimple endomorphism S ∈ End(V ) commutes with H and Y ,
is compatible with h, and satisfies S(F p) ⊆ F p for every p ∈ Z, then S is an
endomorphism of the Hodge-Lefschetz structure.

Concretely, this is saying the following things:

(1) Each eigenspace Ek(H) has a Hodge structure of weight n+k, whose Hodge
filtration is given by intersecting F with the subspace Ek(H).

(2) For each k ∈ Z, the mapping Y : Ek(H)→ Ek−2(H)(−1) is a morphism of
Hodge structures (of weight k).

(3) For each k ≥ 0, the Hodge structure on the primitive subspace

Ek(H) ∩ kerX = ker
(
Y k+1 : Ek(H)→ E−k−2(H)

)

is polarized by the pairing (v′, v′′) 7→ (−1)kh(v′, Y kv′′).

Example 14.2. This result implies Theorem 10.3, by setting Y = RN and S = RS .

Here is another interpretation, closer to the language that Schmid is using in his
paper. Recall from Lecture 9 that the nilpotent endomorphism Y ∈ End(V ) has
an associated monodromy weight filtration W = W•(Y ), with the property that
Y (Wk) ⊆Wk−2. By construction,

grWk = Wk/Wk−1
∼= Ek(H),

and so this has a Hodge structure of weight n+k, whose Hodge filtration is induced
by F . After a shift in indexing, this is saying that the increasing weight filtration
W•−n, together with the decreasing Hodge filtration F •, are part of a mixed Hodge
structure on V . Schmid summarizes the results about Y and h by saying that the
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mixed Hodge structure is “polarized by the pairing h and the nilpotent operator
Y ”. This version has the advantage of not mentioning the (auxiliary) splitting H.

A tedious example. Let us start by analyzing a small example by hand. This is
going to be quite tedious, but it will hopefully help you appreciate the actual proof
of Theorem 14.1.

Example 14.3. Suppose that dimV = Ca⊕ Cb⊕ Cc, with sl2(C)-action given by

Ha = 2a, Hb = 0, Hc = −2c, Y a = b, Y b = 2c.

This is the 3-dimensional irreducible representation, with b = Y a and c = 1
2Y

2a
(to simplify the formulas). We have

h(b, b) = h(Y a, Y a) = h(a, Y 2a) = 2h(a, c),

and so h(a, c) = h(c, a) is real, and h(b, b) = 2h(a, c); on all the remaining basis
vectors, the pairing is zero. In particular, the signature of the pairing (on R6) is
either (4, 2) or (2, 4), depending on whether h(a, c) is positive or negative.

We now assume that we are given a filtration F such that e−
1
2Y F defines a Hodge

structure of weight n = 2, polarized by h; since we can always shift the indices up
or down, we may assume without loss of generality that c ∈ F 0 but c 6∈ F 1. Let

V =
⊕

p+q=2

V p,q

be the Hodge decomposition. What can we deduce about F?

(1) We must have F 3 = 0. Indeed, if xa+ yb+ zc ∈ F 3, then

2xc = Y 2(xa+ yb+ zc) ∈ F 1,

and so x = 0; but then 2yc = Y (yb + zc) ∈ F 2, hence also y = z = 0.
For the same reason, dimF 2 ≤ 1: indeed, xa + yb + zc ∈ F 2 can only be
nonzero if x 6= 0. Thus we see that

c = c0 + c1 + c2,

with cp ∈ V p,q; since c = e−
1
2Y c 6∈ e− 1

2Y F 1, we must have c0 6= 0.

(2) It is also easy to see that c2 spans V 2,0 = e−
1
2Y F 2. As dimF 2 ≤ 1, this

amounts to saying that c2 = 0 implies V 2,0 = 0. Let v = xa+yb+zc ∈ V 2,0

be an arbitrary vector. Then

h(v, c2) = h(xa+ yb+ zc, c) = x · h(a, c),

and so c2 = 0 implies x = 0, hence v = 0. Therefore V 2,0 = Cc2.
(3) Since the Hodge decomposition is orthogonal with respect to h, we get

0 = h(c, c) = h(c0, c0) + h(c1, c1) + h(c2, c2).

Now h(c0, c0) > 0, whereas h(c1, c1) ≤ 0 and h(c2, c2) ≥ 0. This can only
happen if c1 6= 0. Let u, v, w ∈ C be such that c1 = ua+ vb+ wc. Then

e
1
2Y c1 = ua+

(
v +

u

2

)
b+

(
w + v +

u

4

)
c ∈ F 1,

and since F is compatible with the decomposition into H-eigenspaces, all
three summands belong to F 1. In particular, the third summand has to
vanish (because c 6∈ F 1), and so w = − 1

4u− v. Since

0 > h(c1, c1) = h(c1, c) = u · h(a, c)

we also get u 6= 0, hence a ∈ F 1. But then b = Y a ∈ F 0, and so we actually
have F 0 = V . In terms of the Hodge decomposition, this means that

V = V 0,2 ⊕ V 1,1 ⊕ V 2,0.
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(4) Now we argue that c2 6= 0. Suppose to the contrary that c2 = 0; then also

F 2 = 0. Therefore V 1,1 = e−
1
2Y F 1, and in particular

e−
1
2Y a = a− 1

2
b+

1

4
c ∈ V 1,1.

Since h is a polarization, we get

h(a, c) = h
(
a, e−Y a

)
= h

(
e−

1
2Y a, e−

1
2Y a

)
< 0.

The signature of h is therefore (2, 4), and so dimV 1,1 = 2 and dimV 0,2 = 1.
In particular, dimF 1 = 2, and because F is compatible with the decompo-
sition into H-eigenspaces (and c 6∈ F 1), we get F 1 = Ca⊕Cb, and therefore

V 1,1 = Ce−
1
2Y a⊕ Ce−

1
2Y b.

Recall that c1 = ua + vb + wc, where w + v + 1
4u = 0. Since the Hodge

decomposition is orthogonal with respect to h, we get

h
(
c1, e

− 1
2Y a

)
= h

(
c, e−

1
2Y a

)
= h(a, c)

h
(
c1, e

− 1
2Y b
)

= h
(
c, e−

1
2Y b
)

= 0.

It follows that w − v + 1
4u = 1, hence v = − 1

2 ; also u = 2v = −1, and so

c1 = −a− 1

2
b+

3

4
c.

But then h(c1, c1) = h(c1, c) = −h(a, c) > 0, which contradicts c1 ∈ V 1,1.
The conclusion is that c2 6= 0 after all.

(5) We have e
1
2Y c2 ∈ F 2, and since b, c 6∈ F 2, we must have a ∈ F 2 and

e
1
2Y c2 = xa for some x ∈ C. Then c2 = x · e− 1

2Y a, and from

|x|2h(a, c) = |x|2h(a, e−Y a) = h(c2, c2) = h(c2, c) = x · h(a, c),

we deduce that x = 1 and that h(a, c) > 0. Thus c2 = e−
1
2Y a = a− 1

2b+ 1
4c.

Recall that c1 = ua+ vb+ wc, with w + v + 1
4u = 0. This time, we have

0 = h(c1, c2) = h
(
c1, e

− 1
2Y a

)
,

and so w− v + 1
4u = 0; this gives v = 0. From h(c1, c1) = h(c1, c), we then

deduce as before that u = −2 and w = 1
2 , hence c1 = −2a+ 1

2c. Thus

c0 = c− c1 − c2 = a+
1

2
b+

1

4
c.

To summarize, we find that necessarily h(a, c) > 0; moreover

F 3 = 0, F 2 = Ca, F 1 = Ca⊕ Cb, F 0 = Ca⊕ Cb⊕ Cc.

We therefore get a Hodge-Lefschetz structure, in which E2(H) = Ca has weight 4
and type (2, 2), and E0(H) = Cb has weight 2 and type (1, 1), and E−2(H) = Cc
has weight 0 and type (0, 0). The polarization condition is clearly satisfied because

(−1)2h(a, Y 2a) = 2h(a, c) > 0.

Along the way, we determined the Hodge decomposition of c = c0 + c1 + c2 to be

c0 = a+
1

2
b+

1

4
c

c1 = −2a+
1

2
c

c2 = a− 1

2
b+

1

4
c.
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Inverting these relations, we get

4a = c0 − c1 + c2

b = c0 − c2
c = c0 + c1 + c2

Remember these relations, because they will appear again later on.

Outline of the proof. The proof of Theorem 14.1 is going to be a mix of Hodge
theory and representation theory. The general idea is the following. For each ` ≥ 0,
the Lie algebra sl2(C) has a unique irreducible representation S` of dimension `+1.
For example, S0 = C is the trivial representation; S1 = C2 is the standard repre-
sentation; etc. We saw in Lecture 2 that every finite-dimensional representation V
of sl2(C) decomposes into irreducible representations, which means that

V ∼=
⊕

`∈N
S` ⊗C W`,

where eachW` is a finite-dimensional C-vector space (on which sl2(C) acts trivially).
This is a coordinate-free way of saying “dimW` many copies of S`”. For a more
intrinsic description, recall Schur’s lemma:

Homsl2(C)(S`, S`′) =

{
C · id if ` = `′,

0 if ` 6= `′.

Schurs’ lemma implies that W`
∼= Homsl2(C)(S`, V ); we can therefore write the

above decomposition in the more natural form

(14.4) V ∼=
⊕

`∈N
S` ⊗C Homsl2(C)(S`, V ),

where each summand on the right maps to V in the obvious way.
The idea for proving Theorem 14.1 is to show that the decomposition in (14.4)

is compatible with the polarized sl2(C)-Hodge structure on V . More precisely, we
first construct a polarized Hodge-Lefschetz structure (of central weight `) on each
S`. We then show that the vector space Homsl2(C)(S`, V ) has a polarized Hodge
structure of weight n − `, and that the decomposition in (14.4) holds on the level
of polarized sl2(C)-Hodge structures. Since the theorem is true for each S`, it must
then also be true for V .

The irreducible representations. We start with the construction for all the
irreducible representations S`.

Example 14.5. On the trivial representation S0 = C, we can use the pairing
h(x, y) = xy. If we define the filtration by setting F 1 = 0 and F 0 = C, we
get the Hodge structure C(0).

Example 14.6. The interesting case is S1 = C2, with the standard representation

H =

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
, Y =

(
0 0
1 0

)
.

The vector a = (1, 0) has weight 1, the vector b = (0, 1) has weight −1, and Y a = b.
A compatible pairing is given by setting

h =

(
0 1
1 0

)
,

meaning that h(a, b) = 1. The filtration F 1 = Ca and F 0 = Ca ⊕ Cb certainly
satisfies the first two conditions for a polarized sl2(C)-Hodge structure. Let us
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check the third condition. We have

e−
1
2Y F 1 = C

(
a− 1

2
b

)

and since h(a − 1
2b, a − 1

2b) = −1 < 0, we do get a polarized Hodge structure of

weight 1 with S1,0
1 = C(a − 1

2b) and S0,1
1 = C(a + 1

2b). Note that the two vectors

a − 1
2b and a + 1

2b form an orthonormal basis with respect to the inner product
induced by the Hodge structure; it follows that the eigenspaces E1(H) = Ca and
E−1(H) = Cb are orthogonal under the inner product.

Example 14.7. Now let us consider S` for ` ∈ N. The best way to do the construction
is to say that S` = Sym` S1 is simply the `-th symmetric product of S1, and as
such, it inherits a polarized sl2(C)-Hodge structure of weight `. For the sake of
clarity, let me describe the resulting structure in concrete terms. We have

S` = Ce0 ⊕ Ce1 ⊕ · · · ⊕ Ce`,

where e0 = a`, e1 = a`−1b, . . . , e` = b` (as elements of Sym` S1). One checks that

Hej = (`− 2j)ej , Y ej = (`− j)ej+1, Xej = jej−1,

and that the only nontrivial values of the pairing h are

h(ej , e`−j) =
1(
`
j

) .

In particular, h(e0, e`) = 1. The filtration F is given by

F p = Ce0 ⊕ Ce1 ⊕ · · · ⊕ Ce`−p,

so in particular, F `+1 = 0, F ` = Ce0, and F 0 = S`. The filtration e−
1
2Y F defines

a Hodge structure of weight ` on S`, which is just the `-th symmetric product of
the Hodge structure of weight 1 on S1; concretely, we have

Sp,q` = C
(
a− 1

2
b

)p(
a+

1

2
b

)q

for p + q = `, which can of course be expanded in terms of e0, . . . , e`. These
vectors are orthogonal with respect to the inner product induced by the Hodge
structure, and their square length is 1/

(
`
p

)
. The result for S1 implies that the

different eigenspaces Ej(H) are again orthogonal under the inner product.

Note. In case you are wondering how the formulas for the pairing come about,
remember that a hermitian pairing h : V ⊗C V → C induces a hermitian pairing on
Sym` V by the formula

h
(
v1 · · · v`, w1 · · ·w`

)
=

1

`!

∑

σ∈S`

∏̀

j=1

h
(
vj , wσ(j)

)
,

where S` is the group of permutations of the set {1, . . . , `}. Similarly, if V has

a positive-definite inner product 〈 〉, then the induced inner product on Sym` V is
again given by the formula

〈
v1 · · · v`, w1 · · ·w`

〉
=

1

`!

∑

σ∈S`

∏̀

j=1

〈
vj , wσ(j)

〉
.

From this, it is easy to see that if e1, . . . , en ∈ V are an orthonormal basis, then the
vectors ea1

1 · · · eann ∈ Sym` V with a1 + · · ·+ an = ` are mutually orthogonal, and

‖ea1
1 · · · eann ‖2 =

a1! · · · an!

`!
.
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Hodge structure on the invariant subspace. Now let us return to an arbitrary
polarized sl2(C)-Hodge structure V of weight n. The first thing to do is to analyze
the subspace of sl2(C)-invariants; everything else is going to follow from this case.

Proposition 14.8. Let V be a polarized sl2(C)-Hodge structure of weight n. Then

V sl2(C) =
{
v ∈ V

∣∣ Hv = Y v = 0
}

has a Hodge structure of weight n, polarized by the restriction of h, whose Hodge
filtration is F ∩V sl2(C). This Hodge structure is compatible with the polarized Hodge
structure on V defined by the filtration e−

1
2Y F .

The idea of the proof is to carefully analyze the properties of the two operators
Y,H ∈ End(V ). We denote by

V =
⊕

p+q=n

V p,q

the Hodge structure of weight n with Hodge filtration e−
1
2Y F ; it is polarized by

the pairing h. Recall from Lecture 6 that E = End(V ) inherits a Hodge structure
of weight 0, with

E`,−` =
{
A ∈ End(V )

∣∣ A(V p,q) ⊆ V p+`,q−` for all p, q ∈ Z
}
.

It is polarized by the trace pairing (A,B) 7→ tr(AB∗), where B∗ ∈ End(V ) denotes
the adjoint of B ∈ End(V ) with respect to h. Also recall that this is an R-Hodge
structure, where the real structure on E is given by

ER =
{
A ∈ End(V )

∣∣ A∗ = A
}
.

We may write the Hodge decompositions of Y,H ∈ E as

Y =
∑

`∈Z
Y` and H =

∑

`∈Z
H`.

Our assumptions on Y and H can then be expressed as follows.

Lemma 14.9. We have

Y = Y−1 + Y0 + Y1 and H = Y−1 +H0 − Y1,

and these operators satisfy Y ∗−1 = Y1, Y ∗0 = Y0, and H∗0 = −H0.

Proof. From the fact that Y ∗ = Y , we get Y ∗` = Y−` for every ` ∈ Z. The condition

Y F p ⊆ F p−1 implies that Y e−
1
2Y F p ⊆ e−

1
2Y F p−1, which means that Y` = 0 for

` ≤ −2. But then also Y` = 0 for ` ≥ 2, and so actually

Y = Y−1 + Y0 + Y1.

Similarly, we have H∗ = −H, hence H∗` = −H−` for every ` ∈ Z. The condition
HF p ⊆ F p implies that

(H − Y )e−
1
2Y F p = e−

1
2YHF p ⊆ e− 1

2Y F p,

and so H` − Y` = 0 for ` ≤ −1. In particular, H−1 = Y−1 and H` = 0 for ` ≤ −2.
This implies H` = 0 for ` ≥ 2, as well as H1 = −H∗−1 = −Y ∗−1 = −Y1. �

The relation [H,Y ] = −2Y gives us the following additional identity.

Lemma 14.10. We have 2Y0 = 2[Y1, Y−1] + [Y0, H0].

Proof. Consider the component of 2Y = [Y,H] in the subspace E0,0. From the
preceding lemma, we get

2Y0 = [Y1, H−1] + [Y0, H0] + [Y−1, H1] = [Y1, Y−1] + [Y0, H0]− [Y−1, Y1],

which simplifies to the desired identity. �
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We can now prove Proposition 14.8.

Proof of Proposition 14.8. On V , we have a polarized Hodge structure of weight
n with Hodge filtration e−

1
2Y F . It is enough to show that V sl2(C) is a sub-Hodge

structure; the remaining assertions then follow because e−
1
2Y F and F induce the

same filtration on V sl2(C) (due to the fact that Y acts trivially).
Now to say that V sl2(C) is a sub-Hodge structure means that whenever we take

a vector v ∈ V sl2(C), and write its Hodge decomposition as

v =
∑

p

vp,

with vp ∈ V p,q, then each vp ∈ V sl2(C). This is trivially satisfied if v = 0. If v 6= 0,
let p ∈ Z be the least integer such that vp 6= 0. It is clearly enough to prove that

vp ∈ V sl2(C), because we can then repeat the same argument for v − vp. Our goal
is therefore to show that Y vp = Hvp = 0.

From the fact that Y v = 0 and the Hodge decomposition, we deduce that

Y−1vp = 0 and Y0vp + Y−1vp+1 = 0.

From the fact that Hv = 0, we similarly deduce

Y−1vp = 0 and H0vp + Y−1vp+1 = 0.

In particular, Y0vp = H0vp, which is interesting, because Y0 and H0 behave very
differently under taking adjoints. We can use this different behavior to show that
h(Y0vp, vp) = 0. Since Y ∗0 = Y0 and H∗0 = −H0, we have

h(Y0vp, vp) = h(H0vp, vp) = −h(vp, H0vp) = −h(vp, Y0vp) = −h(Y0vp, vp),

and therefore h(Y0vp, vp) = 0. Now we combine this with the identity in Lemma 14.10.
Because we already know that Y−1vp = 0, this gives

0 = 2h(Y0vp, vp) = −2h(Y−1Y1vp, vp) + h(Y0H0vp, vp)− h(H0Y0vp, vp)

= −2h(Y1vp, Y1vp) + h(H0vp, Y0vp) + h(Y0vp, H0vp)

= −2h(Y1vp, Y1vp) + 2h(Y0vp, Y0vp).

Here we used the fact that Y ∗−1 = Y1 and H∗0 = −H0, and also H0vp = Y0vp. Now
Y0vp ∈ V p,q, and since h is a polarization,

h(Y0vp, Y0vp) = (−1)p‖Y0vp‖2,
where ‖ ‖ is the Hodge norm. Likewise, Y1vp ∈ V p+1,q−1, and so

h(Y1vp, Y1vp) = (−1)p+1‖Y1vp‖2.
Putting everything together, we find that

0 = ‖Y1vp‖2 + ‖Y0vp‖2,
which clearly implies that Y1vp = 0 and Y0vp = 0. But then also H0vp = 0, and so

we have proved that Y vp = Hvp = 0, hence vp ∈ V sl2(C). �
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